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Flux vector splitting algorithms for the Euler equations are based on dividing the mass,
momentum and energy fluxes into a ‘‘forward directed flux” Fþ and a ‘‘backward directed
flux” F� (with F� ¼ 0 for Mach numbers M > 1 and Fþ ¼ 0 for M < �1). van Leer (1979,
1982) [4,5] proposed using polynomials of the Mach number for computing Fþ and F� in
the subsonic regime, and derived the lowest order polynomials that satisfy a set of chosen
criteria. In this paper, we explore the possibility of increasing the order of these polynomi-
als, with the purpose of reducing the diffusion across slow moving contact discontinuities
of the flux vector splitting algorithm. We find that a moderate reduction of the diffusion,
resulting in sharper shocks and contact discontinuities, can indeed be obtained with the
higher order polynomials for the split fluxes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Steger and Warming [1] proposed an algorithm based on splitting the mass, momentum and energy fluxes of the Euler
equations into a ‘‘forward” and a ‘‘backward” flux, having positive and negative eigenvalues (respectively) of their associated
Jacobian matrices. van Leer [4,5] proposed an alternative form for the split fluxes in the subsonic regime, as polynomials of
the Mach number. Recent developments in flux vector splitting algorithms include the work of Sun and Takayama [2] and
Sengupta et al. [3].

The flux vector splitting algorithm of van Leer [4,5] has been extensively used in astrophysical applications (e.g. [9,10]),
mostly in implementations with second order spatial and temporal accuracy. At the heart of the algorithms which are used
are the polynomials calculated by van Leer for interpolating the split fluxes in the subsonic regime.

In the present paper, we calculate a set of polynomials of increasing orders of the Mach number for the mass and energy
split fluxes. These polynomials are designed to minimize the mass and energy diffusion through structures such as slow
moving contact discontinuities. We then illustrate the behaviour of the proposed fluxes with an application to one of the
one-dimensional tests proposed by Toro [7].

We should note that Coirier and van Leer [6] presented Mach number polynomials designed with the same objective of
lowering the diffusion at low Mach numbers. Their polynomials, however, led to at best marginally stable numerical
solutions.

The paper is organized as follows. In Section 2, we write the Euler equations in the appropriate form for the derivation of
the Mach number polynomials. In Section 3, we describe the split fluxes of van Leer [4,5] and of Coirier and van Leer [6]. In
Section 4, we derive our new mass and energy split fluxes. In Section 5, we present an analysis of the eigenvalues of these
. All rights reserved.
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fluxes. In Section 6 we discuss a numerical test with a first order implementation of the FVS scheme, and in Section 7 we
analyse the linear stability of this scheme. Finally, in Section 8 we present a summary of the results.
2. The Euler equations

We write the 1D Euler equations in conservative form:
@U
@t
þ @F
@x
¼ 0; ð1Þ
where
UðM;q; csÞ ¼
q

qcsM

qc2
s ½M

2=2þ 1=cðc� 1Þ�

0
B@

1
CA; ð2Þ
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Fe

0
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1
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qc2
s ðM
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0
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1
CA; ð3Þ
are the integrated variables ðUÞ and fluxes ðFÞwritten in terms of the flow density q, the sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
cP=q

p
(where c is

the specific heat ratio) and the Mach number M.
3. van Leer’s fluxes

In a flux vector splitting algorithm, the mass, momentum and energy fluxes are divided into a ‘‘forward directed flux” Fþ

(i.e., moving in the +x-direction) and a ‘‘backward directed flux” F�. For the supersonic regime, the Fþ and F� fluxes are cho-
sen as
Fþ ¼ F; F� ¼ 0 for M > 1; F� ¼ F; Fþ ¼ 0 for M < �1: ð4Þ
The conditions that van Leer [4,5] imposes in order to derive his split fluxes in the �1 6 M 6 1 regime are:

1. F ¼ Fþ þ F�,
2. dFþ=dU must have all eigenvalues P 0 and dF�=dU must have all eigenvalues 6 0,
3. Fþ and F� must be continuous, with Fþ ¼ F for M P 1 and with F� ¼ F for M 6 �1,
4. the components of Fþ and F� must mimic the symmetry of F with respect to M. In other words FþðMÞ ¼ �F�ð�MÞ if

FðMÞ ¼ �Fð�MÞ,
5. dF�=dU must be continuous,
6. dF�=dU must have one eigenvalue vanish for jMj < 1,
7. F�ðMÞ must be a polynomial in M, of the lowest possible order.

With these conditions, van Leer [5] derives the polynomials:
Fþm ¼ qcs
ðM þ 1Þ2

4
; ð5Þ

Fþp ¼ qc2
s
ðM þ 1Þ2

4c
½ðc� 1ÞM þ 2�; ð6Þ

Fþe ¼ qc3
s
ðM þ 1Þ2

8ðc2 � 1Þ ½ðc� 1ÞM þ 2�2; ð7Þ
for the three components of the flux vector (see Eq. (3)).
Actually, the polynomials are derived without imposing a priori condition 2 (see above). van Leer [5] a posteriori checks

that the fluxes given by Eqs. (5)–(7) do satisfy condition 2.
A weakness of flux vector splitting algorithms is the fact that they produce relatively large mass and energy diffusion

across slow moving contact discontinuities. This diffusion is associated with the fact that even though
Fþm þ F�m ¼ Fm ¼ qcM (see condition 1 above and Eq. (3)) go to zero for M ! 0, the moduli of the individual forward and
backward mass fluxes have large values jF�mðM ¼ 0Þj ¼ qcs=4 (see Eq. (5)). A similar situation is found for the energy fluxes,
which have jF�e ðM ¼ 0Þj ¼ qc3

s =2ðc2 � 1Þ (see Eq. (7)).
Coirier and van Leer [6] derived polynomials for Fþm;e with lower values at low Mach numbers. Their polynomials have

negative Fþm;e for part of the �1 < M < 0 range (in other words, they have a negative ‘‘forward directed” flux). We have exper-
imented with recipes giving negative Fþm;e (for a limited Mach number range), and find that in many conditions they produce



8910 A.C. Raga, J. Cantó / Journal of Computational Physics 228 (2009) 8908–8918
a strong anti-diffusion, which results in unstable numerical integrations. These results are consistent with the conclusions
obtained by Coirier and van Leer [6].

In the following section, we derive polynomials for the forward and backward mass and energy fluxes which satisfy the
condition Fþm;e > 0 (in principle implicit in the general idea of having a flux vector splitting method) but have lower absolute
values at low Mach numbers. Such fluxes should produce lower diffusion across slow moving contact discontinuities.

4. The mass and energy fluxes

We derive the mass and energy flux splitting by replacing conditions 6 and 7 of van Leer [5] with the conditions:
Fig. 1
funct
(whi
straig
6. F� must have no zeros, local maxima or minima for �1 6 M 6 1,
7. F�ðMÞmust be the polynomials in M of order p that satisfy the above conditions and have the lowest possible value of
jF�ð0Þj.
With conditions 1 and 3–5 of Section 3 and conditions 6–7 (see above), we derive polynomials of different orders p for the
forward oriented mass and energy fluxes (Fþm and Fþe , respectively, see Eq. (3)). Condition 4 (see Section 3) eliminates odd
values of p. Also, p ¼ 2 is the lowest possible order for Fþm and p ¼ 4 is the lowest possible order for the polynomial for Fþe .

The resulting polynomials with p 6 10 then are:

2nd order ðp ¼ 2Þ:
Fþm
qcs
¼ ðM þ 1Þ2

4
; ð8Þ

4th order ðp ¼ 4Þ:

Fþm
qcs
¼ ðM þ 1Þ3

16
ð3�MÞ; ð9Þ

Fþe
qc3

s
¼ ðM þ 1Þ3

32ðc� 1Þ ½7� c� ð5� 3cÞM�; ð10Þ

6th order ðp ¼ 6Þ:
. Split mass fluxes Fþm and F�m (normalized to qcs) obtained for the polynomials of order p = 2, 4, 6, 8 and 10 (Eqs. (8), (9), (11), (13) and (15)) as a
ion of the Mach number M. The positive curves correspond to Fþm and the negative curves to F�m . The dashed curves correspond to the p ¼ 2 polynomial

ch is identical to van Leer’s split mass flux), and the curves with successively lower absolute values correspond to the p = 4, 6, 8 and 10 solutions. The
ht line that bisects the graph corresponds to the Fm ¼ qcsM mass flux of the Euler equations.
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Fþm
qcs
¼ ðM þ 1Þ4

32
ðM2 � 4M þ 5Þ; ð11Þ

Fþe
qc3

s
¼ ðM þ 1Þ4

64ðc� 1Þ ½11� c� 4ð3� cÞM þ ð3� cÞM2�; ð12Þ

8th order ðp ¼ 8Þ:
. 2. Split energy fluxes Fþe and F�e (normalized to qc3
s ) obtained from van Leer’s polynomial (dashed line, Eq. (7)) and from our polynomials of order p = 4,

and 10 (Eqs. (10), (12), (14) and (16)) as a function of the Mach number M. The positive curves correspond to Fþe and the negative curves to F�e . The solid
ves with successively lower absolute values correspond to the p = 4, 6, 8 and 10 solutions. The curve that bysects the graph corresponds to the energy

of the Euler equations (see Eq. (3)).

. 3. Values of the forward mass flux (Fþm , normalized to qcs: crosses) and the forward energy flux (Fþe , normalized to qc3
s : triangles) at M ¼ 0 as a function

he order p of the polynomials. The values obtained with our polynomials (Eqs. (8)–(16)) are joined with the solid curves. The isolated triangle
responds to van Leer’s energy flux (Eq. (7)).
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Fþm
qcs
¼ 5ðM þ 1Þ5

256
7� 47

5
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; ð13Þ

Fþe
qc3

s
¼ ðM þ 1Þ5

512ðc� 1Þ ½5ð15� cÞ � ð119� 25cÞM þ 5ð13� 3cÞM2 � ð13� 3cÞM3�; ð14Þ

10th order ðp ¼ 10Þ:

Fþm
qcs
¼ 7ðM þ 1Þ6

512
M4 � 6M3 þ 102

7
M2 � 122

7
M þ 9

� �
; ð15Þ

Fþe
qc3

s
¼ ðM þ 1Þ6

1024ðc� 1Þ ½7ð19� cÞ � 2ð143� 21cÞM þ 6ð41� 7cÞM2 � 6ð17� 3cÞM3 þ ð17� 3cÞM4�: ð16Þ

Figs. 1 and 2 show the functions given by Eqs. (8)–(16) for c ¼ 1:4. The second order mass flux polynomial coincides with
the mass flux of van Leer (Eq. (5)). Our fourth order energy flux (Eq. (10)), however, does not coincide with the corresponding
fourth order polynomial of van Leer (see Eq. (7)), having a lower Fþe ðM ¼ 0Þ value (see Fig. 2).
Fig. 4. Eigenvalues kþ of Fþ (solid lines) and k� of F� (dashed lines) as a function of Mach number M. The dotted lines correspond to the eigenvalues
k1 ¼ ðM � 1Þcs; k2 ¼ Mcs and k3 ¼ ðM þ 1Þcs of the Euler equations. The top plot shows the eigenvalues obtained for the combination of our p ¼ 2 mass flux
polynomial (Eq. (8)) and our p ¼ 4 energy flux (Eq. (10)). The bottom plot corresponds to the combination of our p ¼ 10 mass and energy fluxes (Eqs. (15)
and (16)). In both cases, van Leer’s momentum flux was used (Eq. (6)).
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As we have described in Section 3, the mass and energy diffusion for contact discontinuities at rest is associated with the
non-zero values of Fþm;e for M ¼ 0, i.e., with the values of F�m;eðM ¼ 0Þ ¼ �Fþm;eðM ¼ 0Þ. In Fig. 3, we plot the values of
Fþm;eðM ¼ 0Þ for the polynomials of Eqs. (8)–(16), and also for van Leer’s energy flux (Eq. (7)). From this figure, we see that
our p ¼ 10 polynomials have fluxes at M ¼ 0 with values of � 1=2 of the corresponding values of van Leer’s fluxes.

5. The eigenvalues of dF%
=dU

The remaining point in the derivation of the new polynomials for Fþ (Eqs. (8)–(16)) and F� (calculated through the con-
dition F� ¼ F � Fþ, with F given by Eq. (3)) satisfy van Leer’s condition number 2 (see Section 3), namely, that the Jacobian
matrix dFþ=dU must have all eigenvalues kþ P 0 and that dF�=dU must have all eigenvalues k� 6 0. These two relations are
satisfied by the fluxes given by van Leer’s polynomials (Eqs. (5)–(7)).

In Fig. 4, we show the eigenvalues k� (corresponding to the F� fluxes) obtained for a c ¼ 1:4 specific heat ratio for two
combinations:

� 2/4: the p ¼ 2 mass flux polynomial (Eq. (8)) and the p ¼ 4 energy flux polynomial (Eq. (10)).
� 10/10: the p ¼ 10 mass and energy flux polynomials (Eqs. (15) and (16)).

In both cases, van Leer’s momentum flux (Eq. (6)) has been included.
From Fig. 4, we see that for the 2/4 case we obtain two eigenvalues kþ for Fþ that monotonically grow from 0 at M ¼ �1 to

values of cs and 2cs at M ¼ 1. The third eigenvalue is negative, but has a modulus � 2 orders of magnitude smaller than the
other two eigenvalues (analogously, F� has one eigenvalue which is small but positive). Therefore, the conditions of positive
eigenvalues for Fþ and negative eigenvalues for F� is not strictly met, though the values of the k’s with the ‘‘wrong signs” are
small.

For the 10/10 case we obtain a similar behaviour for the eigenvalues (see Fig. 4), with the qualitative difference that the
negative kþ has moduli of � 1=10 of the values of the positive eigenvalues. Therefore, the condition of kþ > 0 is violated more
strongly than in the p ¼ 2=4 case.
Fig. 5. Density structure obtained for the 1D test problem described in Section 6. Counterclockwise from top left, we have the results obtained with: van
Leer’s fluxes, the p ¼ 2 mass flux/p ¼ 4 energy flux combination, the p ¼ 4 mass flux/p ¼ 4 energy flux combination, and the p ¼ 10 mass flux/p ¼ 10 energy
flux combination.
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An interesting property of the eigenvalues of the Fþ fluxes given by the 10/10 combination is that they join the k ¼ v þ c, v
and v � c eigenvalues of the Euler fluxes (Eq. (3)) with continuous derivatives at M ¼ 1. The same thing is evidently found for
the k� values at M ¼ �1 (see Fig. 4). The price one pays for this smoother joining between the subsonic and supersonic F�

fluxes is to have one negative kþ (and positive k�) in the jMj < 1 regime.
6. Numerical test

In order to illustrate the behaviour of the fluxes derived in Section 4, we show results obtained with a first order imple-
mentation of the flux vector splitting algorithm. We use a timestepping procedure of the form:
Ujðt þ DtÞ ¼ UjðtÞ þ
Dt
Dx

� �
Fþj ðtÞ þ F�jþ1ðtÞ � F�j ðtÞ � Fþj�1ðtÞ
h i

: ð17Þ
We present the results obtained for one of the tests suggested in the book of Toro [7]. We start with a domain with a spatial
extent L ¼ 1, which is resolved with 100 grid points. The initial condition is a step function with
ql ¼ 1; Pl ¼ 1000; v l ¼ �19:59745 on the left, and qr ¼ 1; Pr ¼ 0:01; v r ¼ �19:59745 on the right. The discontinuity is lo-
cated at a position x0 ¼ 0:8, and the specific heat ratio has a value c ¼ 1:4.

Starting with this initial condition, the integration is advanced with a Courant number of 0.6 (except for the five first
steps, which are advanced with a Courant number of 0.12), for a total time tm ¼ 0:12. The last timestep is reduced so as
not to exceed tm. This is the setup used by Toro [7], so that the results obtained in his book for this test with different algo-
rithms are directly comparable to the results that we present here.

In Figs. 5–8, we show the flow obtained at the time tm ¼ 0:12 for different choices of the mass and energy fluxes. We have
chosen the following flux combinations:

� VL: van Leer’s fluxes (Eqs. (5)–(7)),
� 2/4: the p ¼ 2 mass flux and p ¼ 4 energy flux (Eqs. (8) and (10)),
� 4/4: the p ¼ 4 mass flux and p ¼ 4 energy flux (Eqs. (9) and (10)),
� 10/10: the p ¼ 10 mass flux and p ¼ 10 energy flux (Eqs. (15) and (16)).
Fig. 6. Velocity structure obtained for the 1D test problem described in Section 6 (also see Fig. 1).
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In all cases the momentum flux is the one of van Leer (Eq. (6)).
In the density stratifications shown in Fig. 5, we find lower diffusion as one progresses from VL to 2/4, 4/4 and 10/10. This

is seen as a narrowing of the contact discontinuity, and as an increase in the values of the densities in the region between the
contact discontinuity and the shock. For the 10/10 fluxes, the correct density (corresponding to the factor of 6 compression in
the strong, c ¼ 1:4 shock) is obtained in one pixel within this region.

For the VL solution, we find that the maximum density jump between two successive cells within the contact disconti-
nuity is ðDqÞVL ¼ 0:86. For the 10/10 solution, the maximum density jump within the contact discontinuity is
ðDqÞ10=10 ¼ 1:10. Therefore, the contact discontinuity in the 10/10 solution is a factor of ðDqÞVL=ðDqÞ10=10 ¼ 0:78 narrower
than in the VL solution.

Fig. 6 shows the flow velocity v obtained at the time tm ¼ 0:12 (see above). Very similar results are obtained for the four
choices of the fluxes. The maximum velocity jump between two successive pixels within the shock grows from ðDvÞVL ¼ 10:4
with van Leer’s fluxes to ðDvÞ10=10 ¼ 14:3 with the tenth order fluxes. Therefore, the shock in the 10/10 solution is a factor of
ðDvÞVL=ðDvÞ10=10 ¼ 0:73 narrower than in the VL solution.

Fig. 7 shows the pressure stratifications. These are very similar for all flux combinations, and show a narrowing of the
shock transition which is similar to the one seen in the density stratifications (see above and Fig. 5). An overshoot in the
postshock pressure develops as one goes to the higher order flux solutions. This overshoot is clearly seen in the 10/10 solu-
tion (see Fig. 7).

Finally, in Fig. 8 we show the stratifications of the thermal energy per unit mass ET ¼ P=ðc� 1Þq. As one goes to higher
order fluxes, an improvement is obtained in the definition of the ‘‘step” in between the shock and the contact discontinuity.
The maximum thermal energy jump between two successive pixels within the contact discontinuity grows from
ðDETÞVL ¼ 220 with van Leer’s fluxes to ðDETÞ10=10 ¼ 303 with the tenth order fluxes. Therefore, the contact discontinuity
in the 10/10 solution is a factor of ðDETÞVL=ðDETÞ10=10 ¼ 0:73 narrower than in the VL solution.
7. Linear stability

As a final point, we analyse the stability of the first order time-stepping algorithm we have used in Section 6 (Eq. (17)). We
assume that the error n satisfies a linear advection equation:
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@n
@t
þ v @n

@x
¼ 0; ð18Þ
where v ¼ uþ cs is the maximum wave propagation speed in a constant velocity flow with u > 0.
Applying the time-stepping algorithm of Eq. (17), we have
njðt þ DtÞ ¼ njðtÞ � Co nþj ðtÞ þ n�jþ1ðtÞ � n�j ðtÞ � nþj�1ðtÞ
h i

; ð19Þ
where Co ¼ vDt=Dx is the Courant number. Through the flux vector splitting algorithm, we can determine the ratio f ¼ nþj =nj.
Introducing nþj ¼ fnj and n�j ¼ ð1� f Þnj in Eq. (19), we obtain
njðt þ DtÞ ¼ njðtÞ � Co½ð2f � 1ÞnjðtÞ þ ð1� f Þnjþ1ðtÞ � f nj�1ðtÞ�: ð20Þ
For f ¼ 1 this equation is an upwind differencing scheme, and for f ¼ 1=2 it corresponds to a CDFT (centred difference, for-
ward time) scheme, known to be unstable. For f � 1, Eq. (20) takes the form
njðt þ DtÞ � njðtÞ þ fCo½njþ1ðtÞ þ nj�1ðtÞ � 2njðtÞ�; ð21Þ
namely, the second-order finite difference operator for a diffusion equation with diffusion coefficient D ¼ fCoðDxÞ2=Dt.
We now substitute a Fourier component entþikx (with k ¼ 0! p=Dx) of the error n into Eq. (20), and compute the value of

the Courant number Cos for marginal stability (i.e., for jent j ¼ 1), obtaining
Cos ¼
ð2f � 1Þð1� cos kDxÞ

ð2f � 1Þ2ð1� cos kDxÞ2 þ 1� cos2 kDx
: ð22Þ
In Fig. 9 we show the values obtained from this equation for Cos as a function of f ¼ nþ=n and cos kDx. In this figure, we see
that for f ¼ 0:5 (corresponding to the lowest value of f shown in the ordinate) we have Cos ¼ 0 (as appropriate for the unsta-
ble FTCD scheme, see above), and for f ¼ 1 we have Cos ¼ 1 (appropriate for an upwind differencing scheme, see above). Val-
ues f < 1=2 result in negative values for Cos (see Eq. (22)), so they are not shown in Fig. 9.

FVS schemes with positive Fþ and negative F� (imposed by condition 60 of Section 4 when applied to the mass and
momentum fluxes) have f > 1. In this region of the plot shown in Fig. 9, we see that Cos is a monotonically growing function
Fig. 8. Thermal energy ðET ¼ P=ðc� 1ÞqÞ structure obtained for the 1D test problem described in Section 6 (also see Fig. 1).



Fig. 9. Courant number Cos for marginal stability of the first order FVS algorithm, as a function of cos kDx and f ¼ nþ=n (see Eq. (22)). The values of Cos are
represented with a logarithmic greyscale and with contours corresponding to a linear spacing of 0.1 (with the straight, horizontal contour at f ¼ 1
corresponding to Cos ¼ 1).

Fig. 10. Values of Fþm=Fm (top) and Fþe =Fe (bottom) as a function of Mach number M. The values obtained with van Leer’s polynomials (see Section 3) are
shown with the dashed lines. The values obtained with our higher order polynomials (see Section 4) are shown with the solid lines, except for the case of
our lowest order Fþm , which is identical to van Leer’s forward mass flux. The curves corresponding to higher order polynomials have lower values of Fþ=F for
all values M < 1.
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of cos kDx. Therefore, the time step will be limited by the requirement of stability for the shortest wavelength mode (with
cos kDx ¼ 0) of the error. For this mode, Eq. (22) gives
Cos ¼
2f � 1

ð2f � 1Þ2 þ 1
; ð23Þ
so that Cos ¼ 1=ð2f Þ for f � 1. Therefore, for large values of f, the maximum stable timestep ðDts ¼ CosDx=ðuþ csÞ, for u P 0Þ
of the algorithm becomes very small.

The discussion until now applies to any FVS scheme. We now focus on the schemes described above. We do this by setting
f ¼ Fþm=Fm or f ¼ Fþe =Fe with Fm and Fe given by Eq. (3), and Fþm and Fþe from van Leer’s polynomials (see Section 3) and by the
polynomials of different orders that we have obtained (see Section 4). The resulting values of Fþm=Fm and Fþe =Fe as a function
of M are shown in Fig. 10.

From this figure, we see that all of the polynomials give f ¼ 1 for M ¼ 1, and f ! 1 for M ! 0. For any given Mach
number 0 < M < 1, the values of f are lower for the polynomials of increasing order.

Therefore, if we take f ¼ Fþm=Fm or f ¼ Fþe =Fe (see Fig. 10), the maximum allowed Courant number for stability is Cos ¼ 1
for M ¼ 1, and it decreases for M ! 0, reaching Cos ¼ 0 for M ¼ 0 (as obtained from Eq. (23) for f ! 1, see also Fig. 9).

We should also note that van Leer’s forward momentum flux has Fþp =Fp ¼ 1 for M ¼ 1, and monotonically decreasing
Fþp =Fp for lower M values, reaching Fþp =Fp ¼ 1=2 at M ¼ 0 (see Eqs. (3) and (6)). Therefore, if we set f ¼ Fþp =Fp we again obtain
a vanishingly small maximum allowed Courant number for M ¼ 1 (see Eq. (23) and Fig. 9).

The linear stability analysis therefore implies that for M ! 0, the maximum allowed timestep Dts ¼ Cos Dx=ðuþ csÞ (for
u P 0) becomes vanishingly small. This property is common to all FVS algorithms with non-zero mass and energy fluxes for
M ¼ 0. From the many results published in the literature it is clear, however, that in applications of van Leer’s FVS scheme to
flows with active, low Mach number regions, stable results are obtained by choosing a Courant number of � 0:01 ! 0:1.

8. Conclusions

We have derived a set of polynomials of order p 6 10 for interpolating the mass and energy components of the split fluxes
F� for the Euler equations in the subsonic, jM < 1j regime. These polynomials are the ones that give the lowest possible value
for jF�ðM ¼ 0Þj, without having maxima, minima or zeroes in the jM < 1j interval. We derive polynomials of orders 2, 4, 6, 8
and 10 for the forward mass flux, and of orders 4, 6, 8 and 10 for the forward energy flux (the backward flux being given by
the relation F� ¼ F � Fþ, with F given by Eq. (3)).

Our forward mass and energy fluxes (combined with van Leer’s momentum flux, given by Eq. (5)) give Jacobian matrices
with two positive and one negative eigenvalue. This in principle violates the basic idea of flux vector splitting algorithms, in
which one divides the Euler fluxes into fluxes with strictly positive and strictly negative eigenvalues (transporting linear per-
turbations in the positive and negative directions, respectively). However, the moduli of the negative eigenvalues are much
smaller than the positive eigenvalues. Probably because of this feature, our fluxes give well behaved flow solutions.

We illustrate the behaviour of three combinations of our mass and energy fluxes through an application of a first order
implementation of the flux vector splitting algorithm. In particular, we apply the algorithm to one of the Riemann problems
used as a test of different algorithms by Toro [7]. We find that all of our fluxes produce somewhat sharper shocks and contact
discontinuities than the fluxes of van Leer [4,5]. In particular, if we use our 10th order polynomials for the mass and energy
fluxes, we obtain shocks and contact discontinuities that are� 20—30% narrower than the ones obtained with van Leer’s fluxes.

To summarize, we have calculated interpolations with polynomials on the Mach number of order 2, 4, 6, 8 and 10 for the
mass and energy split fluxes. These polynomials are alternatives to the corresponding fluxes of van Leer [4,5], and produce
flow solutions with somewhat narrower shocks and contact discontinuities. Even though the improvement obtained over
van Leer’s algorithm is not very large (� 20—30% narrower shocks and contact discontinuities), the implementation of
the new split fluxes in existing flux vector splitting codes is trivial, and probably worth doing. The behaviour of the different
possible combinations of the mass and energy fluxes which we are proposing (see, e.g., Gressier et al. [8]) should be explored
in more detail in future work.
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